

Cyclic Olefin Copolymer (COC) – Valuable Polymeric Modifier for Recyclable & Sustainable PE Packaging Applications

Paul D. Tatarka Polyplastics USA, Inc. Farmington Hills, MI

AMI PE Films Conference February 1 – 3, 2022 St. Augustine, FL

TOPAS® COC

Outline

- What is COC?
- **COC Compatibility with PE**
- Unmet Needs for Recyclable & Sustainable PE Packaging:
 - Stiffness Enhancement
 - Mechanical Stability at Elevated Temperatures
- Film Structure Guidelines
- Testing Recyclability:
 - **Trex Criteria & Results**
 - APR Recycling Study: COC-HDPE Films for Stand-Up Pouch (SUP)
- Conclusions

TOPAS® COC

What is COC? COC Compatibility with PE

TOPAS[®] COC

COC molecule is a chain of small CH₂-CH₂ links randomly interspersed with large bridged ring elements

It cannot fold up to make a regular structure, i.e., a crystallite

COC has no crystalline melting point, but only a glass transition temperature, T_g , at which the polymer goes from "glassy" to "rubbery" behavior

TOPAS® COC

Cyclic Olefin Copolymer – Synthesis & Structure

- Readily available raw materials
- Highly efficient catalyst
 - Low usage
 - Catalyst removed as part of process
 - High purity product
- Transparent
 - Rigid bridged-ring structure prevents crystallization

TOPAS® COC

COC Compatibility with PE

TOPAS[®] C

	Cyclic Olefin Copolymer (COC)	Linear Low Density (LLDPE)
1st Co-monomer	Ethylene	Ethylene
2nd Co-monomer	Norbornene	Alpha Olefins (Butene, Hexene, Octene)
Co-monomer Structure	Cyclic	Linear
Polymer Structure	Linear	Linear
Morphology	Amorphous	Semi-crystalline
Catalysts	Metallocene	Metallocene, Single-Site, Ziegler-Natta
Thermal Transition: Glass Transition Temp. (°C) Melting Point (°C)	68 - 180 	 120 - 127
Distortion Temperature: Vicat (°C) HDT (°C; 66 psi, 0.46 MPa) HDT (°C: 264 psi, 1.8 MPa)	68 - 178 62 - 168 57 - 151	90 - 120 58 - 60 38 - 40

COC & LLDPE share similar chemical features.

Consequently, COC is compatible with PE!

COC molecular structure enables higher temperature resistance.

Unmet Needs for Recyclable & Sustainable PE Packaging: Stiffness Enhancement

TOPAS® COC

Stiffness Enhancement

TOPAS[®] COC

Stiffness Enhancement Illustrated: Formed Cavities: COC & Octene LLDPE

0 10 15 20 30 % COC Incremental addition of TOPAS[®] 8007 into monolayer LLDPE clearly shows progressive improvement in cavity appearance.

TOPAS® COC

Unmet Needs for Recyclable & Sustainable PE Packaging:

Mechanical Stability at Elevated Temperatures

TOPAS® COC

TOPAS[®] COC – Viscoelasticity

TOPAS[®] COC

loss elastic modulus

Mechanical and Thermal Property Comparison***

Thermal Distortion & Transitions Temperatures: COC & PE

Polymer	Grade	Manufacture	Density (g/cc)	Melting Point	Tg (°C)	Vicat Softening	HDT (°C) [66	HDT (°C) [264
Test			ASTM D792 /			ASTM D1525	ASTM D648	ΔSTM D648
Method			D1505 ISO 1183	D3418	ISO 11357	ISO 306	ISO 75	ISO 75
	Dowlex 2045	Dow Chemical	0.920	122		108		
	Dowlex 2064G	Dow Chemical	0.935	125		119		
	Dowley 2032	Dow Chemical	0.926	124		109		
LLDPE	Petrothene GA635962	LyondellBasell	0.935				57	39
LDPE	Agility 1022	Dow Chemical	0.921	109		91		
LDPE	LDPE 4010	Dow Chemical	0.917	105		89		
HDPE	Alathon H4250	LyondellBasell	0.942	124		116	60	
HDPE	Alathon H5618	LyondellBasell	0.956	130		125	73	
HDPE	HD 6601.29	ExxonMobil	0.948	130			69	42
HDPE	HD 6719	ExxonMobil	0.952	131			73	46
СОС	TOPAS 9506	Polyplastics	1.02		65	68	62	58
СОС	TOPAS 8007	Polyplastics	1.02		78	79	72	66
COC	TOPAS 7010	Polyplastics	1.02		110	*108	*103	*92
сос	TOPAS 5013	Polyplastics	1.02		134	134	126	114
сос	TOPAS 6013	Polyplastics	1.02		138	135	130	117
сос	TOPAS 6015	Polyplastics	1.02		158	155	150	133
СОС	TOPAS 6017	Polyplastics	1.02		178	178	170	151
Sources:	ces: Company Datasheets & www.ulprospector.com: *estimated value							

HDT measures resistance to deformation at elevated temperatures under load. COC can minimize distortion of PE exposed to thermal & mechanical stress!

TOPAS® COC

2.7 mil Three-Layer Blown Film (TOPAS-PE Blend / PE / TOPAS-PE Blend)

TOPAS 6013F-04 (T_g 138°C) dramatically increases PE modulus at hot fill temperatures

TOPAS® COC

Seal Initiation vs. Modulus

TOPAS[®] COC

COC significantly improves film modulus without compromising seal initiation temperature.

Film Structure Guidelines

TOPAS[®] COC

PE-COC Guideline Structures for Recyclable* ALL PE Films

Polyolefin Materials

■ COC, LLDPE (any comonomer), HDPE, LDPE (sparingly)

Monolayer

- 20-40% COC (inefficient, not recommended)
- Multiple layers enable efficient distribution of COC in the film, tailored mechanical properties, and lower material cost.

Three Layer: Ratio: 20-60-20 or 15-70-15

- A: 30-70% COC: outer skin layer, temperature resistance
- B: 0-20% COC: core layer, deformation stability, stiffness, reclaim
- C: 10-15% COC: sealant layer, seal strength

Five Layer: Ratio: 15-15-40-15-15 or 10-20-40-20-10

- A: 30-70% COC: outer skin layer, temperature resistance
- B: 0-20% COC: outer tie layer, deformation stability, stiffness, reclaim
- C: 0-30% COC: core layer, deformation stability, stiffness, reclaim
- D: 0-20% COC: inner tie layer, deformation stability, stiffness, reclaim
- E: 10-15% COC: sealant layer, seal strength

* These are all readily reprocessible in-house; as post-consumer 'recyclability' definitions and testing are continually evolving, please ensure any structure conforms to recycling regulations and guidelines for the region where product is to be sold and used

Recycle Testing Results: Trex Association of Plastics Recyclers (APR)

TOPAS® COC

TOPAS Sample #	Description (monolayer)	PE MFR (dg/min) *(190°C; 2.16kg)	COC MFR (dg/min) (190°C; 2.16kg)	COC Tg (°C)	Trex Sample #	Melt Index (dg/min)	Ash (%)	DSC Peak Temperature (°C)	Indicative Structure	Acceptance
F06-35-1	Exxon HD7925 (HDPE)	2.5			19-0137	13.519	0.00	138	HDPE Blend	Yes
F06-35-2	HD7925 + 20% 8007F-400	2.5	1.8	78	19-0139	2.4405	0.0071	139	HDPE Blend	Yes
F06-49-1	Exceed 1018CA (LLDPE)	1.0			19-0140	0.9601	0.0008	121	LDPE/LLDPE Blend	Yes
F07-12-5	90% 1018 CA + 10% 8007 F04	1.0	1.8	78	19-0138	1.004	0.0031	121	LDPE/LLDPE Blend	Yes
F07-12-6	80% 1018CA + 20% 8007 F04	1.0	1.8	78	19-0141	1.0189	0.0021	120	LDPE/LLDPE Blend	Yes
F07-12-7	70% 1018CA + 30% 8007 F04	*1.0	1.8	78	19-0142	1.0718	0.0195	122	LDPE/LLDPE Blend	Yes
F12-52-20	95% FP120C + 5% 5013F-04	*1.0	<0.1	134	19-0143	0.9197	0.039	119	LDPE/LLDPE Blend	Yes
F12-52-21	90% FP120C + 10% 5013F-04	*1.0	<0.1	134	19-0144	0.8151	0.0009	124	LD/HDPE Blend	Yes
F12-52-22	80% FP120C + 20% 5013F-04	*1.0	<0.1	134	19-0145	0.7741	0.0005	123	LD/HDPE Blend	Yes

All COC containing film samples are recyclable according to Trex Protocols. DSC clearly distinguished HDPE crystalline melting point from LLDPE, LDPE or PP.

TOPAS® COC

APR PE Film Critical Guidance (FPE-CG-01)

TOPAS® COC

Polyolefin Control & Innovation SUP Films

TOPAS[®] COC

5-Layer Polyolefin Control Film				5-Layer Polyolefin-COC Innovaton Film				
	Layer	Material	Resin		Layer	Material	Resin	
	Thickness	Percentage	Туре		Thickness	Percentage	Туре	
Layer	(%)	in Layer		Layer	(%)	in Layer		
A (Outer)	10	85	LLDPE	A (Outer)	10	35	COC: Tg = 110°C	
		15	LDPE			35	COC: Tg = 138°C	
						30	LLDPE	
B (Outer Tie)	20	100	HDPE	B (Outer Tie)	20	85	LLDPE	
						15	COC: Tg = 78°C	
C (Core)	40	85	LLDPE	C (Core)	40	100	HDPE	
		15	LDPE					
D (Inner Tie)	20	100	HDPE	D (Inner Tie)	20	80	LLDPE	
						20	COC: Tg = 78°C	
E (Sealant)	10	80	LLDPE	E (Sealant)	10	85	LLDPE	
		20	LDPE			15	COC: Tg = 65°C	
Total:	100			Total:	100			

Innovation SUP film uses total of 15.5% COC, distributed as: 3.5% Tg=138°C, 3.5% Tg=110°C, 7.0% Tg=78°C & 1.5% Tg=65°C.

APR Film Test Results: Bulk Density

No detrimental influence from COC on film bulk density.

TOPAS® COC

APR Film Test Results: Extrusion & Pellets **Polyplastics**

	Extruded Pellet	Extrusion/Pellet Data					
Control	T CHICC	Variable	Control	Test 50%	Test 100%		
		Melt Temperature (°C)	220	220	221		
		Screen Pack Pressure Build (%)	-5.00%	3.60%	-2.94%		
		Density (g/cm³)	0.946	0.947	0.949		
		Melt Flow Rate (g/10min)	1.455	1.097	0.855		
		Volatiles/Moisture (%)	0.0041	0.0198	0.0145		
lest 50%		Ash Content (%)	0.41%	0.31%	0.19%		
		Bulk Density (kg/m³)	545	542	529		
	Carl Part	Primary Peak Temperature (°C)	128.63	128.16	127.35		
Test 100%		Percent Polypropylene	<1.00%	<1.00%	<1.00%		
		All films exhibit s	similar e	extrusio	n behav		

TOPAS® COC

APR Film Test Results: Properties

Blown Film

Test 50%

Control

Test 100%

Variable	Control	Test 50%	Test 100%
Process Stability	Yes	Yes	Yes
Thickness (mils)	2.0	2.0	2.1
MD Tear Strength (gf)	159.2	338.0	624.6
(Delta%)		(112.37%)	(292.39%)
TD Tear Strength (gf)	248.8	521.1	389.0
(Delta%)		(109.43%)	(56.40%)
MD Tensile Strength (psi)	3055	3421	3253
(Delta%)		(11.97%)	(6.49%)
TD Tensile Strength (psi)	2481	3148	3303
(Delta%)		(26.90%)	(33.11%)
MD Elongation at Yield (%)	40.798	41.645	57.879
(Delta%)		(2.08%)	(41.87%)
TD Elongation at Yield (%)	8.057	44.450	55.332
(Delta%)		(451.70%)	(586.76%)
Dart Impact Strength (g)	158	200	698
(Delta%)		(26.84%)	(342.86%)
F.A.R	1	0	0

COC improved all mechanical properties!

TOPAS® COC

Blown Film Data

Conclusions

TOPAS[®] COC

- Unique among polyolefins, HDT and Modulus of COC perform like temperature-resistant engineering thermoplastics such as PA & PET.
- HDT better explains how polyolefin materials respond to thermal deformation under load than Vicat.
- **COC** can minimize distortion of PE exposed to thermal & mechanical stress!
- COC demonstrated recyclable under Trex protocols.
- Stand-Up Pouch (SUP) film with 15% COC satisfied APR PE Film and Flexible Packaging protocols (FPE-CG-01).
 - Critical Guidance Recognition letter is in The APR Design[®] Guide for Plastics Recyclability.
- In Europe, COC has been certified as recyclable in both PE and PP films by Institut cyclos-HTP.
- Shrink sleeves with COC have passed bottle recycling protocols in US & EU.
- Further recyclability testing is underway in multiple regions.

TOPAS[®] COC

Disclaimer

NOTICE TO USERS: To the best of our knowledge, the information contained in this publication is accurate, however we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. All technical information and services of Polyplastics USA, Inc. are intended for use by persons having skill and experience in the use of such information or service, at their own risk.

Further, the analysis techniques included in this publication are often simplifications and, therefore, approximate in nature. More rigorous analysis techniques and prototype testing are strongly recommended to verify satisfactory part performance. Anyone intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards.

It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication.

Properties of molded parts, sheets and films can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Any determination of the suitability of a particular material and part design for any use contemplated by the user is the sole responsibility of the user. The user must verify that the material, as subsequently processed, meets the requirements of the particular product or use. The user is encouraged to test prototypes or samples of the product under the harshest conditions to be encountered to determine the suitability of the materials.

Material data and values included in this publication are either based on testing of laboratory test specimens and represent data that fall within the normal range of properties for natural material or were extracted from various published sources. All are believed to be representative. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colorants or other additives may cause significant variations in data values.

We strongly recommend that users seek and adhere to the manufacturer's current instructions for handling each material they use, and to entrust the handling of such material to adequately trained personnel only. Please call Polyplastics USA, Inc. at +1 248.479.8928 for additional technical information. Call Customer Services at +1 248.479.8928 for the appropriate Safety Data Sheets (SDS) before attempting to process our products. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist.

The products mentioned herein are not designed nor promoted for use in medical or dental implants.

TOPAS® COC