Bottle and Container Enhancements Using Cyclic Olefin Copolymers

Paul D. Tatarka

SPE 33rd Annual Blow Molding Conference

October 2 – 4, 2017

TOPAS® Cyclic Olefin Copolymer (COC)
Your Clear Advantage
Outline

- Introduction to TOPAS® COC – The Basics
 - Market Segments
 - What is COC?
 - Viscoelastic Properties
 - Chemical Resistance
- Multilayer Extrusion Blow Molding (EBM) with COC
- Reheat ISBM: HDPE-COC
- Conclusions
TOPAS® COC – Market Segments

Healthcare & Diagnostic
Cartridges, syringes, vials, drug delivery devices, microplates, microfluidic devices, cuvettes, bio-chips, PCR

Consumer Electronics
Mobile light guides, windows, touch screens; lenses, sensors, flat panel displays; antennas

Packaging and Films
Food, healthcare, protective and optical films; containers and closures in personal care and consumer markets
Value Propositions

- Stiffness & Strength
- Thermoformability
- Transparency & Gloss
- Temperature Resistance
- Barrier – Water, Alcohol, Acid, Nitrogen, Helium
- Chemical Resistance
- Sustainability
- Low Adsorption
- Low Orientation Stress
- Heat Sealing
COC is Amorphous

COC molecule is a chain of small CH₂-CH₂ links randomly interspersed with large bridged ring elements.

It cannot fold up to make a regular structure, i.e., a crystallite.

COC has no crystalline melting point, but only a glass transition temperature, \(T_g \), at which the polymer goes from “glassy” to “rubbery” behavior.
Cyclopentadiene (C₅H₆) and norbornene are reacted with ethylene (H₂C = CH₂) under the influence of a metallocene catalyst to form cyclic olefin copolymer (COC). The process uses readily available raw materials, a highly efficient catalyst with low usage, and ensures high purity in the product. The resulting material is amorphous and crystal clear.
TOPAS® COC – Viscoelasticity

Mechanical properties stable up to glass transition temperature

storage elastic modulus

loss elastic modulus
TOPAS® COC - Chemical Resistance

Polar organic solvents
- Ethanol, methanol, butanol, isopropanol, (short chain alcohols)
- Acetone, butanone (short chain ketones)

Aromatic solvents
- Benzaldehyde
- Toluene
- Benzene
- Chlorinated Solvents

Non-polar organic solvents
- Pentane, hexane, heptane etc. (alkanes)
- Gasoline (petrol ether)
- Norbornene
- Mineral Oil

Other
- Oleic Acid

Resistant:
- Increase of weight < 3% or loss of weight < 0.5%, elongation at break not substantially altered

Limited resistance:
- Increase of weight 3-8% or loss of weight 0.5-5%, elongation at break reduced by < 50%

Not resistant:
- Increase of weight > 8% or loss of weight > 5%, elongation at break reduced by > 50%

TOPAS® COC is resistant to acids, alcohols, bases and polar solvents
Multilayer Extrusion
Blow Molding (EBM)
Multilayer High Gloss EBM Bottle

Description:
- High shine in cost effective process

Value Proposition:
- Optimize shine
- Structures:
 - 20/ 80 COC / HDPE
 - COC/ HDPE + regrind/ HDPE
- Processing ease
- Environmentally & recycle friendly

TOPAS® Grade:
- 8007F-600

Color depth perception due to high shine
Chemical Resistance for Hair Dye Bottles

- **Description:**
 - Enhance chemical resistance to sustain shelf life

- **Value Proposition:**
 - Chemical Resistance
 - Alcohols & acetone
 - Ammonia, hydrogen peroxide
 - Optimal moisture barrier to extend shelf life
 - No paneling - stiff walls
 - Environmentally & recycle friendly
 - Eliminate post-fluorination

- **TOPAS® Grade:**
 - 8007F-600

Chemical resistance for sustained product life
Keys to Successful EBM with TOPAS® COC

- Preference for Multilayer vs. Monolayer Blends
 - Maintain melt strength
 - Maintain impact strength of HDPE
 - Structures:
 - COC/HDPE; COC/HDPE/COC; COC/HDPE+ recycle/COC

- COC Extrusion Process Guidelines to Eliminate Unmelts
 - Proper screw design is essential:
 - Barrier screw with mixing section
 - > 28:1 L/D
 - > 60 mm diameter
 - Reverse temperature profile (add heat early)
 - Pre-heat COC pellets in dryer
 - Blend COC with 10 – 20 % TOPAS® E-140
 - Lab scale extruders can make COC look bad
 - Polish Bottle Mold if High Gloss is Desired
HDPE-COC
Reheat Injection Stretch Blow Molding (ISBM)
Benefits of HDPE Reheat ISBM vs. HDPE EBM

- Light Weighting
 - Orientation and ordered molecular alignment provides stiffness
 - Reduce container weight by 20 – 40 percent
- Superior Bottle Finish
 - Improve consistency of thread dimensions
 - Improve surface detail
- Improve Aesthetics
 - Reduce haze
 - Increase gloss
- Reduce Waste
 - Less purge & shorter start-up times
 - No flash trim
- Improve Container Performance
 - Eliminate weld lines
 - Reduce pinhole leaks and drop impact failures
- Potential for Very Fast Production Rates
 - > 6X increase in bottles/hour/machine
Annual Sales (2014): 4.6 billion lb.
EBM Bottle Estimate (TAPI): 1.9-2.4 billion lb.
Large untapped market for HDPE reheat ISBM!
Limitations of HDPE for Reheat ISBM

- Deficiency of HDPE in Reheat ISBM Process
 - HDPE *DOES NOT* strain harden
 - Reheat ISBM HDPE bottles are difficult to manufacture, requiring precise temperature control
 - Stretching temperature process window 1–3°C
 - Slower rates and poor yield compromises process economics
 - Good & bad bottles can be made independent of process conditions

[Images of plastic bottles with labels]
PE-COC Strain Hardening – Illustrative Example

Five-Layer (290 µ): PE/COC-78/PE/COC-78/PE (LLDPE)
Layer Ratio: 4/14/64/14/4
Biaxially stretched at 4 x 4 & 6.5 x 6.5 (Bruckner-Karo)
Strain Hardening: Gradual increase in stress during stretching
Why Add COC to HDPE for Reheat ISBM?

- HDPE w/COC **DOES** strain harden
- Strain hardening enables uniform stretching over broad temperatures.
- Improve ISBM process for HDPE bottles w/ COC (“flip a switch”):
 - Broaden stretching temperature process window > 10°C
 - Substantial increase to productivity and yield
Container Properties

Top Load

Force (lb) at 1.0-inch Deflection

<table>
<thead>
<tr>
<th></th>
<th>HDPE</th>
<th>HDPE / 10% COC-1</th>
<th>HDPE / 15% COC-1</th>
<th>HDPE / 15% COC-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.4</td>
<td>23.5</td>
<td>18.3</td>
<td>35.6</td>
<td></td>
</tr>
</tbody>
</table>

Material Distribution

Wall Thickness (mil)

<table>
<thead>
<tr>
<th>Bottle Height (in)</th>
<th>HDPE</th>
<th>HDPE / 15% COC-2</th>
<th>HDPE / 17% COC-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.00</td>
<td>11</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>6.90</td>
<td>10</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>5.00</td>
<td>13</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>4.10</td>
<td>16</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>2.60</td>
<td>36</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>1.60</td>
<td>22</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>1.00</td>
<td>18</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>0.40</td>
<td>22</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>Average</td>
<td>18.5</td>
<td>18.1</td>
<td>16.9</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>8.4</td>
<td>4.0</td>
<td>3.1</td>
</tr>
</tbody>
</table>

- **COC content & Tg has positive effect on top load & drop impact performance**
- **COC reduces wall thickness variation**

Bruceton Staircase Drop Impact Test

Mean Failure Height (inch)

<table>
<thead>
<tr>
<th>Drop Temperature & Orientation</th>
<th>HDPE</th>
<th>HDPE / 10% COC-1</th>
<th>HDPE / 15% COC-1</th>
<th>HDPE / 17% COC-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>23ºC Vertical</td>
<td>>96</td>
<td>>96</td>
<td>>96</td>
<td></td>
</tr>
<tr>
<td>4ºC Vertical</td>
<td>>96</td>
<td>>96</td>
<td>>96</td>
<td></td>
</tr>
<tr>
<td>4ºC Horizontal</td>
<td>57</td>
<td>60</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>
HDPE-COC Reheat ISBM

- Study Benchmarks
 - Sidel SB01 Blow Molding Machine
 - Rate: 300 – 400 BPH
 - 1-litre, 31-gram container
 - Defects:
 - HDPE ~60%
 - HDPE-COC ~20%

- Further Optimization:
 - Pre-form molding conditions
 - Warmer is preferred
 - Pre-form design
 - Axial and hoop stretch ratios
 - IR heating optimized for PET, not HDPE
 - HDPE responds differently than PET!
Unique properties of COC improves processing and performance of HDPE in blow molding:
- Amorphous
- Heat resistance
- Strength & stiffness
- Low haze & high gloss
- Strain hardening

COC-HDPE for EBM
- High gloss & improved aesthetics
- Chemical resistance

ISBM HDPE w/ COC containers offers four compelling advantages:
- Light weighting (>25% reduction)
- 4X – 6X faster production rates versus EBM
- Improvement in mechanical properties
- Chemical resistance
NOTICE TO USERS: To the best of our knowledge, the information contained in this publication is accurate, however we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. All technical information and services of TOPAS Advanced Polymers, Inc. are intended for use by persons having skill and experience in the use of such information or service, at their own risk.

Further, the analysis techniques included in this publication are often simplifications and, therefore, approximate in nature. More vigorous analysis techniques and prototype testing are strongly recommended to verify satisfactory part performance. Anyone intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards.

It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication.

Properties molded parts, sheets and films can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Any determination of the suitability of a particular material and part design for any use contemplated by the user is the sole responsibility of the user. The user must verify that the material, as subsequently processed, meets the requirements of the particular product or use. The user is encouraged to test prototypes or samples of the product under the harshest conditions to be encountered to determine the suitability of the materials.

Material data and values included in this publication are either based on testing of laboratory test specimens and represent data that fall within the normal range of properties for natural material or were extracted from various published sources. All are believed to be representative. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colorants or other additives may cause significant variations in data values.

We strongly recommend that users seek and adhere to the manufacturer’s current instructions for handling each material they use, and to entrust the handling of such material to adequately trained personnel only. Please call TOPAS Advanced Polymers, Inc. - hotline +1.859.746.6447 x4400 for additional technical information. Call Customer Services at +1.859.746.6447 x4402 for the appropriate Safety Data Sheets (SDS) before attempting to process our products. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist.

The products mentioned herein are not intended for use in medical or dental implants.