COC Enhanced Polyolefin Films for Shrink Sleeves and Labels

AWA International Sleeve & Label Conference 2010
Chicago, IL
(updated 2017)

Randy Jester, Market Development Packaging and Film
TOPAS Advanced Polymers Inc.

TOPAS® Cyclic Olefin Copolymer (COC)
Your Clear Advantage.
Outline

- Sleeve Materials
 - Traditional Materials
 - Desirable Properties
 - New Developments

- Enhanced Polyolefins

- TOPAS COC for Enhanced Polyolefins

www.topas.com
Polymer used for Shrink Sleeves
Material comparison

- **PVC** has a high density so a water flotation recycling process is impossible. It has a poor environmental image but is low cost.

- **PETG** shows a high growth rate although it is the most expensive material. Water flotation recycling process is not possible for the transparent material due to high density. It has a steep shrink curve.

- **OPS** is the dominant material in Japan. It works well for many applications, but due to temperature sensitivity, logistics can be difficult. It is less stiff than PETG and PVC. Density borderline.

- **OPP** is not considered as a shrink sleeve material due to a maximum shrinkage of 20% at 120°C in MD and low stiffness.
Developments for Shrink Sleeves and Labels

Materials / Process

- **Materials**
 - Recycling friendly
 - Low density
 - Biopolymers not appropriate
 - Low Density
 - Polyolefin
 - Foamed PETG
 - Material Combinations / Multilayer films
 - PS/PETG
 - PS/PE/PP
 - PE/PP/Cyclic Olefins

- **Process**
 - New roll fed shrink label technology
 - Sealing by Laser / Ultrasonic / UV adhesive
 - High speed sleeve applicators
 - Automatic roll change systems

www.topas.com
Plastic Recycling and Sleeve Materials

Is it about density?

In order to increase recycled PET supply and quality the industry has to promote a system bottle label that:

- Can be easily separated by the consumer (tear-off), or:
- Will be removed in the recycling plant
 - Increased separation efficiency
 - DENSITY becomes an issue for materials not separated by scanning systems

Source: AWA Shrink Sleeves Conference 2009, M. Ferraio, KP-films
Standard shrink sleeve materials are not floatable for water separation
Desirable Material:
Enhanced Polyolefin Shrink Sleeve and Label Substrates

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>◆ Desirable incumbent material</td>
<td>◆ Limited functionality</td>
</tr>
<tr>
<td></td>
<td>▪ Low density (0.9 g/cc)</td>
<td>▪ Low shrink</td>
</tr>
<tr>
<td></td>
<td>▪ Low cost</td>
<td>▪ Low stiffness</td>
</tr>
<tr>
<td></td>
<td>▪ Recycling friendly, floatable</td>
<td>▪ Not solvent sealable</td>
</tr>
<tr>
<td>Enhanced</td>
<td>◆ Polyolefin solution</td>
<td>◆ More Complex</td>
</tr>
<tr>
<td>Polyolefin</td>
<td>▪ Low density (0.95 g/cc)</td>
<td>▪ Multilayer film</td>
</tr>
<tr>
<td></td>
<td>▪ Recycling friendly, floatable</td>
<td>▪ Cost higher than PP</td>
</tr>
<tr>
<td></td>
<td>▪ Solvent sealable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Medium-high shrink</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Increased stiffness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Cost competitive with established materials</td>
<td></td>
</tr>
<tr>
<td>PVC PETG</td>
<td>◆ Established standards</td>
<td>◆ Not recycling friendly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ High density, 1.35 g/cc</td>
</tr>
</tbody>
</table>

www.topas.com
Density and Performance of Enhanced Polyolefins

Enhanced polyolefin labels float like industry standard PP non-shrink labels.
Potential for New Materials

Market Opportunity:
low density steam shrinkable
medium-high shrink

Traditional sleeve labels:
PVC, PETG

Medium to high shrink materials with low density = Benefits for volume applications with recycling requirements
Low density is not enough...

- **Requirements**
 - Sealable, all processes
 - Shrink performance
 - Transparent, glossy
 - Printable
 - Stiff
 - Tough
 - Low density
 - Simple
 - Cost efficient
Enhanced Polyolefin
Cyclic Olefins (TOPAS®) as modifier for shrink films

- Low Density (<0.97 in a coex film)
- Compatible Polyolefin, no tie layer needed
- Highly Transparent
- High Rigidity (COC modulus up to 3 GPa)
- Easily Printable, stable surface treatment
- Solvent Seam compatible
- Copolymer family with wide range of shrink properties (33 – 140°C)
- Efficient film manufacturing
- Tough enough to survive supply chain handling
- Custom shrink properties possible
- Sealable by all common processes

www.topas.com
TOPAS® Cyclic Olefin Copolymer

A random metallocene copolymer of Cyclic Olefin and Ethylene

Increased Cyclic Olefin content

HDT °C

150
130
70
60
30

www.topas.com
TOPAS® Cyclic Olefin Copolymers
A Unique Combination of Properties

Adjustable Temperature Stability
High Transparency
High Shrink
Low Shrink Force
High Moisture Barrier
High Purity
Polyolefin
Low Density
Metallizable
Printable
High Stiffness

www.topas.com
Shrinkage Curves of TOPAS® 9506, 8007, 6013 Grades with Tg 65 to 140°C (qualitative comparison)
Example: Shrink Curves
TOPAS-enhanced polyolefin multilayer films

Shrink properties adjustable by formulation in a wide range between those of PP and PETG
Example: 3-Layer Polyolefin film with COC

Composition

Three layer Polyolefin film
A / B / A
A: TOPAS COC rich skin layer;
B: Polyolefin rich core layer

Physical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>50</td>
<td>µm</td>
<td></td>
</tr>
<tr>
<td>Solvent sealable</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>950</td>
<td>kg/m³</td>
<td>ISO 1183</td>
</tr>
</tbody>
</table>

Mechanical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>50</td>
<td>MPa</td>
<td>ISO 527-3</td>
</tr>
<tr>
<td>Elongation, MD</td>
<td>50</td>
<td>%</td>
<td>ISO 527-3</td>
</tr>
</tbody>
</table>

Optical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gloss, 60°</td>
<td>130</td>
<td>%</td>
<td>ISO 2813</td>
</tr>
<tr>
<td>Haze</td>
<td>2</td>
<td>%</td>
<td>ISO 14782</td>
</tr>
</tbody>
</table>

Shrink Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>90° C, MD</td>
<td>50</td>
<td>°C</td>
<td>10 sec in Oil</td>
</tr>
<tr>
<td>90° C, TD</td>
<td>0</td>
<td>°C</td>
<td>10 sec in Oil</td>
</tr>
</tbody>
</table>
Summary: COC Advantages in Shrink Films

- COC is a polyolefin like PE and PP, but amorphous for high shrink
- Stretched films show high shrinkage at low shrink force
- Brilliant appearance, high gloss
- Stiff for reliable sleeve handling
- Adjustable shrinkage behavior
- High yield due to low film density
- Separates from PET by standard water flotation process
- Simplifies recycling for consumer per How2Recycle label
- Proven successful by major brand owners

www.topas.com
Last but not least
on TOPAS® COC and TOPAS Advanced Polymers

■ TOPAS® COC
 ■ A copolymer of ethylene and cyclic olefin
 ■ Performance Solutions for
 ■ Packaging
 ■ Healthcare
 ■ Optics
 ■ Electronics

■ TOPAS Advanced Polymers
 ■ Dedicated producer of TOPAS® COC resin
 ■ As part of the Polyplastics Group, a world-scale technical resin manufacturer
Thank you for your attention!

- For more information: www.topas.com
- Contact EU info@topas.com
- Contact US info@topas-us.com

TOPAS® Cyclic Olefin Copolymer (COC)
Your Clear Advantage.